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The nature of the S dependence of spin traces 
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Abstract. Using the quasiclassical formalism we present a simple proof that traces of 
products of N spin operators are polynomials in S ( S  + 1) of degree [ N / 2 ] .  

In mathematical and theoretical physics, traces of functions of spin operators often 
occur. A prime example is the statistical mechanics of (quantum) Heisenberg systems 
(Heisenberg 1928) where the free energy and the correlation functions are related 
directly to such traces. 

Given the spin, S, the spin operators Si ( i  = 1, 2, 3) are the three generators of O(3) 
in the (2S+l)-dimensional representation. Then traces of a product of N such 
operators 

(1) 

are invariant tensors of O(3). Since there are only two independent invariants, Sii and 
~ ~ ~ k ,  the tensorial nature of F can be nothing but products of these two objects. 
However, the dependence of F on S is not completely transparent. Experience and 
intuition both point to the fact that F depends on S only through the parameter 
S ( S  + 1). Because this is the ‘value’ of the Casimir S .  S and 6, has intimate links with it, 
one could reasonably expect this parameter to emerge. In this brief paper, we employ 
the quasiclassical formalism (Kaplan 197 1, Mirkovitch and Summerfield 1973 and 
earlier references therein), which lends itself to this question naturally, to obtain a 
simple proof of the nature of this dependence. 

K1.. . iN =Tr[Si, . . . Si,]/(2S + 1) 

Preliminaries. We will need a trivial lemma 

Fll  I N  = F * l N  11 (2) 

which follows from ( a )  TrM = TrMT and ( b )  the hermiticity of SI. Next, let us review 
briefly the relevant parts of the quasiclassical approach. To each spin operator we 
associate its Wigner equivalent: 

s, -+ ( S , ) W  = so, 
where Cl, are the components of a unit vector in ordinary Euclidean three-space. (The 
unit matrix is identified with the function 1.) The algebra satisfied by these spins is then 
‘taken care of’ by an operator (Groenewold 1946, Kaplan 1971) in the function space of 
Cl. In particular, products of spins are represented by 

(3) Stis,, . . . Si, +(SRi,)G[(Soi,)G[. . . [(sfii,)G(1)1* . .I 
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with 

Refering the reader to Kaplan (1971) for further details, let us just comment that 
(i) the differential operators satisfy aoRb = &b; 

(ii) the arrows on them indicate the direction they operate; 
(iii) the brackets indicate that 2 operates on everything to its right while > operates 

(iv) the . . . represent higher derivatives which do not enter in (3) since R’ap = 0 for 
only on the R to its left; 

p > 1. It is convenient to multiply (3)  by 2N and express the RHS of (3) as 

fiilHj2. . . Hi” 
where 

f i i  = 2SRiG = 2 J R j  + 6,. 
For later convenience, we have defined 

1 J = S + z  

In this formalism, the trace operation is just (2s + 1) d i 2 / ( 4 ~ ) ,  the integration over the 
‘surface’ of the sphere. Thus 

F =Tr[Sj, . . . SiN]/(2S + 1) = 2-N (dR/4r ) f i j I  . . . fiLN(1).  (9) 
Finally, the last ‘preliminary’ concerns the possibility of integration by parts. In (9), 

there are lots of derivatives acting to the right. We can change them to actions on the 
left, though this procedure is not trivial. In the appendix, we show that, under the 
integral, f i i  is the same as fii with 

f i j  = 2JRj - 6, (10) 
where 

6, ‘>b[Sib-ojRb +iEibcnc]-n,. 

Now we are ready to prove the following theorem. 

Theorem. F is a polynomial in S(S  + 1) of degree [N/2], the largest integer in N/2. 

Proof. In terms of J,  this theorem may be restated as: F is a polynomial in J z  with 
N as the highest possible power in J. Since fi is linear in J, equation (9) immediately 
tells us that F is a polynomial of degree N in J. We only need to prove that F is even in J, 
thus eliminating all the odd powers. 

Consider 

( 4 ~ ) 2 ~ F ~ ,  ...iN ( J )  = J dR(2JR + d),, . . . ( ~ J R  + d)iN (12a) 
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Integration by parts led to (12b). To obtain (12c), we let all fl+ -0. All parts of 6 are 
odd except the h f l  term; this is the reason for the complex conjugation. But (12c) is 
nothing but 2NFk, . . , ,  ( - J ) .  Using (2), we arrive at the evenness of F, QED. 

We close with several remarks. 
(1) If a function of spin operators can be expressed in a (convergent) expansion in 

powers of S, then the trace of that function is also even in J. An example is exp(s * I ) .  
(2) If we were interested only in the F's  which are totally symmetric in the indices, 

then we could employ the formula 

exp(B,S,) + exp[Bi(SfliG)](l) = (cosh B + R I  sinh B,)2S. (13) 

The integral over R is easily performed to give 

1 ( 1 + G ( 2 S  + 1)2B2+ 
) - I  

1 .)( 1 + % ~ ~ + % ~ 4 + .  . . . 

Since (2s + 1) = 2J, the evenness of J is explicit. Expansion of (14) in powers of Bi will 
produce the totally symmetric part of F. Clearly, only even N contribute to these 
tensors-any odd N must involve at least one &,+ The application of this result is 
limited, however, since the B's of the most interesting problem-the Heisenberg 
system-do not commute. 

(3) One immediate application of this theorem is the following. In a 1/S expansion 
of the Heisenberg system (Harrigan and Jones 1973) about the classical limit ( S  = CO), 

every other power of the expansion requires no more calculation than substituting 
[ S ( S  + l)]"* into S.  This confusing statement is much more transparent in the language 
of J. Consider a function of J obtained by traces, Z(J) .  According to this theorem, 2 is 
a function of J 2 ,  so that 

Z = Z ~ + J - ~ Z ~ + J - ~ Z ~ + .  . 

zo+S-2z1 +S-3(-Z1)+S-4(Z2+az,)+S-5(-2Z2-:Z1)+. . . , 
In terms of S,  this is just 

from which we see that only every other order in S produces new corrections. 
(4) Work is in progress to generalise the quasiclassical formalism to other Lie 

groups. Typically, more than one independent Casimir exists and several parameters 
are required to label a representation. It would be interesting to see how this theorem 
manifests itself in those cases. 

Appendix 

We wish to show that 

where f and g are arbitrary functions of a. 
1971) 

To facilitate our work, we use the equivalent representation for fi (Chang et a1 

(-4.2) 2sflaG = 2saa - RaL'jL'j f iR,eijkLlfln,L'k 
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= J ~ { ~ J R O  - 6a)g  

The operator in the curly brackets is defined to be I?. 
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